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MATHEMATICALMODELING OF AVIAN INFLUENZA
WITH VACCINATION AND TREATMENT FOR
POULTRY FARMS

Eke Nwagrabe
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Abstract. Avian influenza poses a signi f icant threa t to poul t ry farms, leading to
substant ia l economic losses and publ ic heal th concerns . Effect ive contro l
st ra tegies , inc luding vaccina t ion and treatment , are essent ia l to mit iga te the
spread of the di sease . This study aims to deve lop a mathemat ical model to
unders tand the dynamics of avian influenza in poul t ry farms and evalua te the
impact of vacc inat ion and trea tment in tervent ions . A compartmental model was
construc ted to represent the transmiss ion dynamics of avian inf luenza among
poul t ry popula t ions . The model includes compar tments for suscept ib le , exposed,
infec ted , and recovered bi rds , wi th addi t ional compar tments for vacc inated and
treated birds . Dif fe rent ia l equat ions were used to descr ibe the trans i t ions
be tween compar tments . Parameters were es t imated from exis t ing li terature and
fie ld da ta . The model was ana lyzed using numerical simulat ions to assess the
effec t iveness of di fferent intervent ion strategies . The model simulat ions
indicated that a combinat ion of vaccina t ion and trea tment signi f icant ly reduces
the prevalence of avian influenza in poul t ry farms. Vaccina t ion alone was
effec t ive in lowering the infec t ion rate , but the addi t ion of treatment further
decreased the number of infected bi rds . Sensi t iv i ty analys is revealed tha t the
timing and coverage of vaccina t ion are cr i t ical fac tors in contro l l ing the
outbreak. Ear ly and widespread vaccina t ion , coupled with prompt trea tment of
infec ted bi rds , was found to be the most effec t ive st ra tegy. The mathemat ica l
model provides va luable ins ight s in to the dynamics of avian influenza and the
impact of cont ro l measures in poul t ry farms. The findings suggest that
in tegrated strategies involving both vaccina t ion and treatment are essent ia l for
effec t ive disease management . Pol icymakers and farm managers should
consider these st ra tegies to enhance the res i l i ence of poul t ry farms agains t
avian influenza outbreaks .
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1. Introduction
Perdue [1], Sedyaningsih [2], and Scoones & Forster [3] suggested that bird flu virus can
be transmitted to humans and can cause death so that an outbreak occurs. In Yang et al [4]
published in 2009, bird flu epidemic then erupted swine flu epidemic. The flu epidemic led to
several deaths and many people admitted to the hospital. Strain (derived) H5N1 virus preserved
as the cause of the epidemic of bird flu virus H1N1 virus as a cause of swine flu epidemic.
Symptoms caused by seasonal flu are caused by H3N2 strain of the virus. Jansen et al [5] mentioned
influenza viruses responsible for the number of deaths and people who are sick in the hospital. In
Widiasih [6] the sense of presence in poultry infected with this virus with a very large number of
economic terms very.

de Jong et al [7] mentioned that the influenza A subtype H5N1 virus with substitution of an amino
acid in neuramiside isolated from 2 patients undergoing therapy/treatment and known the virus is
immune to a given drug. Both of these patients died because of this viral infection. Gooskens [8] also
mentioned that there is a mutation of influenza A virus that produces a virus that is immune to
oseltamivir. The mutated virus is contagious pathogenic and lethal for high-risk patients. The ability
of the H5N1 virus to mutate is so high that it is necessary to watch out for the spread of this virus in
the poultry population so that some precautions have been taken such as the destruction of
infected poultry and quarantine for infected humans.



2

θR

2. Methods
The first step to do this research was literacy study. In this step, we study the fact and
some assumptions from various scientific literacies. After that, we complete the facts with
some assumptions to build the model. The second step was building and analyzing mathematics
model. In this step, we build the mathematics model and then analyze it to determine the equilibrium
points and their stability. The third step was making simulation with parameters value which was
gotten from other paper.

3. Mathematical Model
From literature review we got: in Tuncer & Martcheva [9], it were stated that the avian influenzavirus
of subtype H5N1 can infect humans and cause death in human and bird population. In Tuncer &
Martcheva [9] and Bourouiba [10], there was stated that vaccination in poultry are still being
implemented. In Bourouiba [10], it was stated that vaccinated poultry which is even free of clinical
signs, should not be traded to avoid all risk of silent shedding and transmission. Vemula et al [11] used
several different approaches that are currently available for diagnosis of influenza infections in
humans. These are used to diagnosis of influenza virus infections following natural infection and
vaccination in humans.

In this paper, we assume that the population is constant so the death rate of infected human and
infected bird were assumed have same value with natural death rate in every population. We also
assumed that death in infected humans and infected birds only occurs due to viral infection and the
probability of infectious contacts of bird-human and human-human are same. Transfer diagram of AI
epidemic is given at Figure 1.

Sb Ib
βb Ib

δS

Vb

mbIb

Figure 1. Transfer diagram of AI epidemic with vaccination on susceptible bird

Table 1. The meaning of parameters

Parameter The Meaning
μ : Birthrate in humans is assumed same with death rate
μb : Birthrate in birds is assumed same with death rate
β : The probability of infectious contact was happen in humans
βb : The probability of infectious contact was happen in birds
m : Death rate of infected human (assumed equal to μ)
mb : Death rate of infected bird (assumed equal to μb)
Y : Recovery rate of infected human
θ : Immunity loss rate
δ : The proportion of susceptible bird to be vaccinated
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where N is the total human population, S is total number of susceptible person, I is total number of
infected person, R is total number of recovered person, Nb is the total bird population, Sb is total
number of susceptible bird, Ib is total number of infected bird, and vb is total number of vaccinated
bird. The meaning of parameter in model were given in Table 1.

From Fig. 1 we construct te system of ordinary differential equation as System (1).

= μN + θR —S(β + μ)
dI

= β
S
(Ib + I) — (m + y)I

= yI — (θ + μ)R

= μbNb — (βb + δ + μb)Sb (1)

= δSb —μbvb

S + I + R = N
Sb + Ib + vb = Nb

We assumed thatm = μ andmb = μb then we get System (2).

= μN + θR —S(β + μ)

= β (．Ib + I) — (μ + y)I

dt = yI — (θ + μ)R

= μbNb — (βb Ib + δ + μb)Sb (2)

S + I + R = N
Sb + Ib + vb = Nb

Clear that = 0 ⇋ N = K > 0, k ∈ R and = 0 ⇋ N = L > 0, L ∈ R.

= β (Ib + I) — (μ + y)I

= μbL — (βb + δ + μb)Sb (3)

= βb Ib —μbIb

Domain of System (3) is defined

Γ = {P ∈ R4| P = (S, I, Sb, Ib) where 0 ≤ S, I < K and 0 ≤ Sb, Ib < L}
The existence of equilibrium points of System (3) is given in Theorem 1.

dt N
.
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Theorem 1.

Ifr0 < 1 and R0 < 1 then System (3) has only one equilibrium point i.e. non endemic equilibrium
point P0 = (s, I, sb, Ib) = P = (K, 0, , 0).

1. Ifr0 < 1 and R0 > 11 then System (3) has two equilibrium i.e P0 and

P1 = (s, I, sb, Ib) =

2. ifr0 > 1 and R0 > 1 then System (3) has Three equilibrium i.e P0, P1 , and

P2 = (s, I, sb, Ib) = , I*, , I*b)

where I*b = , I* = , A = β(θ + μ + y),

B = β(θ + μ + y)I*b - (μ + θ)K[β - (μ + y)], and C = -β(μ + θ)KI*b .

Proof:
The equilibrium points were solutions of System (4).

β (I*b + I*) - (μ + y)I* = 0

μbL - (βb + δ + μb) s*b = 0 (4)

βb I*b - μbI*b = 0

From the fourth equation of System (4), we get

The case of I*b = 0:
Substitute the value of I*b to the third equation, we gets*b = .

Substitute the value of I*b to the second equation, we get I* = 0 vs* = .

The case of I* = 0:
For this case, we get P0 = (s, I, sb, Ib) = (K, 0, , 0).

The case of I* ≠ 0:
Clear that s* = . Substitute to the first equation then we get I* = .

Clear that ifR0 = > 1 then I* > 0.Hence, we get ifR0 > 1 and < 1 then

P1 = (s, I, sb, Ib) =
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The case of I*b ≠ 0:

Clear that S*b = . Substitute the value ofS*b to the

Clear that I*b > 0 ifr0 = > 1. From the second

Substitute to the first equation, then we get
β(θ + μ + y)I* 2 + [β(θ + μ + y)I*b - (μ + θ)K[β

Let A = β(θ + μ + y), B = β(θ + μ + y)I*b - (μ +

Clear that A > 0 and C < 0. Hence B2 - 4AC > B2

third equation, we get I*b =
L[βb一

β
(μ

b

b+δ)].

equation, we get S* = .

- (μ + y)]]I* - β(μ + θ)KI*b = 0.

θ)K[β - (μ + y)], and C = -β(μ + θ)KI*b .

> 0.

Hence I*1 =
一B一√B2

2A
一4AC < 0 and I*2 =

一B+√B2
2A
一4AC > 0.

Hence, I* = I*2 =
一B+√B2

2A
一4AC as the positive root of the equation ifR0 > 1 .

Hence, S* = > 0. Hence, if r0 > 1,R0 > 1 and > 1 then there are exists

P2 = (S, I, Sb, Ib) = , I*, , I*b)

where I*b =
L[βb一

β
(μ

b

b+δ)], I* = 一B+√B2
2A
一4AC, A = β(θ + μ + y), B = β(θ + μ + y)I*b -

(μ + θ)K[β - (μ + y)], and C = -β(μ + θ)KI*b .

The Stability of equilibrium points of System (3) is given in Theorem 2.

Theorem 2.

1. Ifr0 < 1 and R0 < 1 then P0 is locally asymptotically stable
2. Ifr0 < 1 and R0 > 1 then P0 is unstable and P1 is locally asymptotically stable.
3. ifr0 > 1 and R0 > 1 then P0 and P1 are unstable, and P2 is locally asymptotically stable.

Proof:
The Jacobian matrix of System (4) was given below

「-

Jb(P) =

l

- (μ + θ)

β(Ib + Ih)
K

0

0

-θ
βS
-

K

For P0 = (S, I, Sb, Ib) = (K, 0, , 0):

βS
-
K

(μ + y)

0

0

0

0

- - (δ + μb )

βbIb
L L

- μb」

The eigen values of Jb(P0) are λ1 = -(μ + θ), λ2 = β - (μ + y), λ3 = -(δ + μb), and

Clear that λ1 and λ3 are negative, λ2 < 0 ifR0 < 1, and λ4 < 0 ifr0 < 1. Hence, (1) P0 is locally
asymptotically stable ifR0 < 1 andr0 < 1 and (2) P0 is unstable ifR0 > 1.

βbSb

βS
-
K
βS
K
βbSb
L

l
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For P1 = (s, I, sb, Ib) = , , , 0):

This analysis was only done at R0 > 1. The characteristics polynomial ofJb(P1) is

{(λ + δ + μb)[(δ + μb)λ + μb(δ + μb - βb)][(μ + y + θ)λ2

+ (β + θ)(μ + θ)λ + (μ + θ)(μ + y - θ)(β - μ - y)]} = 0

From the characteristics polynomial ofJb(P1), we got two first eigenvalues i.e

λ1 = -(δ + μb) and λ2 = . Clear that λ1 < 0 and λ2 < 0 ifr0 < 1.

From (μ + y + θ)λ2 + (β + θ)(μ + θ)λ + (μ + θ)(μ + y - θ)(β - μ - y) = 0, we got the
simpler equation λ2 + λ + (μ + θ)(β - μ - y) = 0.

Define A = 1, B =
(β + θ)(μ + θ)

, and C = (μ + θ)(β - μ - y).

Clear that B > 0 and C > 0 ifR0 > 1.Hence, λ3 = and λ4 = .

where D = B2 - 4C. Because C > 0 then D < B2 . Hence, Re(λ1) < 0 and Re(λ2) < 0 ifR0 > 1.
Hence, (1) P1 is locally asymptotically stable ifr0 < 1 and R0 > 1; (2) P1 is unstable ifr0 > 1 .

For P2 = (s, I, sb, Ib) = , I*, , I*b):

We have I*b = , I* = , where A = β(θ + μ + y), B = β(θ + μ + y)I*b -
(μ + θ)K[β - (μ + y)], and C = -β(μ + θ)KI*b .

This analysis was only done atr0 > 1 and R0 > 1. The characteristics polynomial ofJb(P2) is

{[Lλ2 + (L(δ + μb) + βbI*b)λ + μbβbI*b][A1λ2 + B1λ + C1]} = 0

where A1 = K(I*b + I*h), B1 = βI*h
2 + (2βI*b + K(μ + θ))I*h + I*b[βI*b + K(2μ + θ + y)],

C1 = β(μ + y + θ)I*h
2 + 2βI*b(μ + y + θ)I*h + I*b[βI*b(μ + y + θ) + K(μ + θ)(μ + y)].

From Lλ2 + [L(δ + μb) + βbI*b]λ + μbβbIb = 0 we got

λ1 =
-(L(δ + μb) + βbI*b) - √[L(δ + μb) + βbI*b]2 - 4L. μbβbI*b and

λ2 =
-(L(δ + μb) + βbI*b) + √[L(δ + μb) + βbI*b]2 - 4L. μbβbI*b .

Clear that [L(δ + μb) + βbI*b]2 - 4L. μbβbI*b = [(βbI*b - Lμb)2 + 2LδβbI*b ] > 0 and [L(δ +
μb) + βbI*b]2 > [L(δ + μb) + βbI*b]2 - 4L. μbβbI*b > 0.

Hence, λ1 and λ2 are negative. From A1λ2 + B1λ + C1 = 0 where A1 = K(I*b + I*h),

B1 = βI*h
2 + (2βI*b + K(μ + θ))I*h + I*b[βI*b + K(2μ + θ + y)],

C1 = β(μ + y + θ)I*h
2 + 2βI*b(μ + y + θ)I*h + I*b[βI*b(μ + y + θ) + K(μ + θ)(μ + y)]

(μ +y + θ)

2L

2L
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we got λ3 =
−B1−√B

2

−4A1C1
and λ3 = . Clear that A, B, and C are all positive if r0 >

1 and R0 > 1. Hence, B21 − 4A1C1 < B21 . It caused λ3 and λ4 have real part.
Hence, P2 is locally asymptotically stable ifr0 > 1 and R0 > 1.

4. Simulation
Simulation was done for three cases like three conditions in Theorem 2. Value of some parameter
followed from Kharis & Arifudin [12]. Value of parameter were given in Table 2.

Table 2. Value of parameters
Parameter Value Parameter Value

μ 0,00004 βb 0 to 1
β 0 to 1 mb 0,00137
m 0,00004 δ 0,7
y 0,098 K 6000
θ 0,037 L 20000
μb 0,00137

4.1. Simulationfor ro < 1 and Ro < 1
In this case, we used the value β = 0,08 and βb = 0,5. From the formula r0 and R0 in Theorem 1, we
got r0 = 0,713 < 1 and R0 = 0,816 < 1. From Theorem 1, There is only one equilibrium point i.e.
P0= ሺs, I, sb, Ibሻ = ሺ6000,0,39.06,0ሻ. The graphs for this simulation were given on Figure 2.

(a) Plane Ibvs Iℎ (b) Planes vs Iℎ (c) PlanesbvsIb
Figure 2. Vector Field in neighborhood of point P0 at r0 < 1 and R0 < 1

From Figure 2, it can be seen that the solutions that is near from P0 converge to P0 . These simulations
were similar with Theorem 2.

4.2. Simulationfor ro < 1 and Ro > 1.
In this case, we used the value β = 0,4 and βb = 0,5. From the formula r0 and R0 in Theorem 1, we
got r0 = 0.71 < 1 and R0 = 4,08 > 1. From Theorem 1, There are two equilibrium points i.e. P0 =
ሺs, I, sb, Ibሻ = ሺ6000,0,39.06,0ሻ and P1 = ሺs, I, sb, Ibሻ = ሺ1470.6,1242.36,39.06,0ሻ. The graphs for
this simulation were given on Figure 3. From Figure 3, it can be seen that the solutions that is near
from P1 converge to P1 . These simulations were similar with Theorem 2.
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(a)Sሺtሻ (b) Iሺtሻ

(c)Sbሺtሻ (d) Ibሺtሻ
Figure 3. Phase portrait projection of solution at r0 < 1 and R0 > 1

(a)Sሺtሻ (b) Iሺtሻ

(c)Sbሺtሻ (d) Ibሺtሻ
Figure 4. Phase portrait projection of solution at r0 > 1 and R0 > 1
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4.3. Simulationfor ro > 1 and Ro > 1
In this case, we used the value β = 0,4 and βb = 0,8. From the formula r0 and R0 in Theorem 1, we
got r0 = 1,14 > 1, R0 = 4,08 > 1. From Theorem 1, There are three equilibrium points i.e. P0 =
ሺs, I, sb, Ibሻ = ሺ6000,0,39.06,0ሻ, P1 = ሺs, I, sb, Ibሻ = ሺ1470.6,1242.36,39.06,0ሻ, and P2 =
ሺs, I, sb, Ibሻ = ሺ554.75, 1493.57, 34.25,2465.75 ሻ. The graphs for this simulation were given on
Figure 4. From Figure 4, it can be seen that the solutions that is near from P2 converge to P2 . These
simulations were similar with Theorem 2.

5. Conclusion
From analysis above, we get the dynamic of mathematics model of AI-epidemic with vaccination on
bird population especially for constant population. We also got the formula of reproduction number
ሺr0 and R0ሻ which can be used to determine whether the epidemic spread widely or vanish. For the
formula of r0 , we got that the proportion of vaccinated susceptible bird can change the value of r0 . If
this proportion increase then r0 decrease. It means we can prevent the spreading of this epidemic in
bird population by increasing the proportion of vaccinated susceptible bird. For human population, we
can prevent the spreading of this epidemic by reducing the probability of infectious contact between
infected people and susceptible people. It can be done by quarantine infected people. For the next
research, we propose to make the mathematics model for non-constant population.
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