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Abstract. Avian influenza poses a significant threat to poultry farms, leading to
substantial economic losses and public health concerns. Effective control
strategies, including vaccination and treatment, are essential to mitigate the
spread of the disease. This study aims to develop a mathematical model to
understand the dynamics of avian influenza in poultry farms and evaluate the
impact of vaccination and treatment interventions. A compartmental model was
constructed to represent the transmission dynamics of avian influenza among
poultry populations. The model includes compartments for susceptible, exposed,
infected, and recovered birds, with additional compartments for vaccinated and
treated birds. Differential equations were used to describe the transitions
between compartments. Parameters were estimated from existing literature and
field data. The model was analyzed using numerical simulations to assess the
effectiveness of different intervention strategies. The model simulations
indicated that a combination of vaccination and treatment significantly reduces
the prevalence of avian influenza in poultry farms. Vaccination alone was
effective in lowering the infection rate, but the addition of treatment further
decreased the number of infected birds. Sensitivity analysis revealed that the
timing and coverage of vaccination are critical factors in controlling the
outbreak. Early and widespread vaccination, coupled with prompt treatment of
infected birds, was found to be the most effective strategy. The mathematical
model provides valuable insights into the dynamics of avian influenza and the
impact of control measures in poultry farms. The findings suggest that
integrated strategies involving both vaccination and treatment are essential for
effective disease management. Policymakers and farm managers should
consider these strategies to enhance the resilience of poultry farms against
avian influenza outbreaks.
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1. Introduction
Perdue [1], Sedyaningsih [2], and Scoones & Forster [3] suggested that bird flu virus can
be transmitted to humans and can cause death so that an outbreak occurs. In Yang et al [4]
published in 2009, bird flu epidemic then erupted swine flu epidemic. The flu epidemic led to
several deaths and many people admitted to the hospital. Strain (derived) H5N1 virus preserved
as the cause of the epidemic of bird flu virus HIN1 virus as a cause of swine flu epidemic.
Symptoms caused by seasonal flu are caused by H3N2 strain of the virus. Jansen et al [5] mentioned
influenza viruses responsible for the number of deaths and people who are sick in the hospital. In
Widiasih [6] the sense of presence in poultry infected with this virus with a very large number of
economic terms very.

de Jong et al [7] mentioned that the influenza A subtype H5N1 virus with substitution of an amino
acid in neuramiside isolated from 2 patients undergoing therapy/treatment and known the virus is
immune to a given drug. Both of these patients died because of this viral infection. Gooskens [8] also
mentioned that there is a mutation of influenza A virus that produces a virus that is immune to
oseltamivir. The mutated virus is contagious pathogenic and lethal for high-risk patients. The ability
of the H5N1 virus to mutate is so high that it is necessary to watch out for the spread of this virus in
the poultry population so that some precautions have been taken such as the destruction of
infected poultry and quarantine for infected humans.



2. Methods

The first step to do this research was literacy study. In this step, we study the fact and
some assumptions from various scientific literacies. After that, we complete the facts with
some assumptions to build the model. The second step was building and analyzing mathematics
model. In this step, we build the mathematics model and then analyze it to determine the equilibrium
points and their stability. The third step was making simulation with parameters value which was
gotten from other paper.

3. Mathematical Model

From literature review we got: in Tuncer & Martcheva [9], it were stated that the avian influenzavirus
of subtype H5N1 can infect humans and cause death in human and bird population. In Tuncer &
Martcheva [9] and Bourouiba [10], there was stated that vaccination in poultry are still being
implemented. In Bourouiba [10], it was stated that vaccinated poultry which is even free of clinical
signs, should not be traded to avoid all risk of silent shedding and transmission. Vemula et al [11] used
several different approaches that are currently available for diagnosis of influenza infections in
humans. These are used to diagnosis of influenza virus infections following natural infection and
vaccination in humans.

In this paper, we assume that the population is constant so the death rate of infected human and
infected bird were assumed have same value with natural death rate in every population. We also
assumed that death in infected humans and infected birds only occurs due to viral infection and the
probability of infectious contacts of bird-human and human-human are same. Transfer diagram of Al
epidemic is given at Figure 1.

uS ml HR

S
T B (b +1) T
N YI | R
—_—
S |— 1 |—| R =l S
---\.
ubNb—> | Sp . > I, ——* mb
BbN—blb
0S
1LbSb ———— Vb

Vb

Figure 1. Transfer diagram of Al epidemic with vaccination on susceptible bird

Table 1. The meaning of parameters

Parameter The Meaning
u : Birthrate in humans is assumed same with death rate
Wb : Birthrate in birds is assumed same with death rate
B : The probability of infectious contact was happen in humans
Bb : The probability of infectious contact was happen in birds
m : Death rate of infected human (assumed equal to L)
mb : Death rate of infected bird (assumed equal to pb)
Y : Recovery rate of infected human
0 : Immunity loss rate
6 : The proportion of susceptible bird to be vaccinated




where N is the total human population, S is total number of susceptible person, [ is total number of
infected person, R is total number of recovered person, Np is the total bird population, Sp is total
number of susceptible bird, Ib is total number of infected bird, and vy, is total number of vaccinated
bird. The meaning of parameter in model were given in Table 1.

From Fig. 1 we construct te system of ordinary differential equation as System (1).
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We assumed that m = p and mb = pp then we get System (2).
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Hence, we get System (3)
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Domain of System (3) is defined
' ={P €R4/P = (S1Sp Ib) where 0 <S,I <Kand 0 < Sp,Ib <L}

The existence of equilibrium points of System (3) is given in Theorem 1.



Theorem 1.
Letry = iand Ry = L
pp +6 u+y
Ifrg < 1 and Ro < 1 then System (3) has only one equilibrium point i.e. non endemic equilibrium

point Po = (s, I,sb,Ib) = P = (K, 0, S“j:b, 0).

1. Ifrgp < 1and Ry > 11 then System (3) has two equilibrium i.e Po and
B _(Kp+y) Kp+0)p—(w+y)] wml
Pl - (SI Il Sb, Ib) - » ] » 0
B Blu+y+6) 5+ up
2. ifrg > 1 and Ry > 1 then System (3) has Three equilibrium i.e Po, P1, and

P2 = S,I, b.lb)= * * Ill II
(s, Ls (ﬁ(fb"'f) Bv )
where I}, =W,I* =w,A =BO +p+y),

B=PB(0+u+y- (k+06)K[B-(k+y)] andC = -B(u + O)KI;.

Proof:

The equilibrium points were solutions of System (4).
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From the fourth equation of System (4), we get
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The case of I, = 0:

Substitute the value of I, to the third equation, we getsy, = - oL

S+up’

K(pty)

Substitute the value of I to the second equation, we get I* = 0 vs* = 5

The case of I = 0:

For this case, we get Po = (s, 1,sb,Ib) = (K, 0 ad

., 0).

The case of I # 0:

Clear that s* = @ Substitute to the first equation then we get I* = £UtOIB-G+r)]

Buty+6)
Clear that ifRo = ﬁ > 1thenI" > 0.Hence, we get ifRo > 1 andjTy < 1 then
Klut+y) Ku+8)IB—(+y)] wl )

B Bluty+6) S+u

P1 = (s, LspIb) = (




The case of |, # O'

Clear that Sp, = ;9 L. Substitute the value of Sp, to the ghird equation, we get [} — LBe— (uo+d)]
Sb _ K(u+y)r®
Clear that I > Qifrg = Y > 1. From the second equation, we get S = DR

Substitute to the first equation, then we get

BO +p+y)I"? + [BO+ p+ Yl - (1 + OKIB - (w+ VI - B(u + OKI; =

LetA =0 +p+Yy),B =BO +u+y)lp - (1 +OKIB - (k +y)],and C = -B(k + O)KI,.
Clear that A > O and C < 0. Hence B2 - 4AC > B2 > 0.
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Hence, I =I5 = as the positive root of the equation ifRo > 1 .

Hence, S” = M > 0. Hence, if rg > 1,Ro > 1 and % > 1 then there are exists
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The Stability of equilibrium points of System (3) is given in Theorem 2.

Theorem 2.
Letry = iand Ry = L
pp +6 u+y

1. Ifrg < 1and Ro < 1 then Po is locally asymptotically stable
2. 1Ifrg < 1and Ro > 1 then Po is unstable and P1 is locally asymptotically stable.
3. ifrp > 1 and Ro > 1 then Po and P1 are unstable, and P2 is locally asymptotically stable.

Proof:
The Jacobian matrix of System (4) was given below
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For Po = (S, 1,Sb, Ib) = (K, O,5+ , 0):

The eigen values of Jb(Po) are Ay = -(LW+0), Ay =B -(L+Yy), A3 =-(5 + ub), and
tp By — (6 + muy)]

14 = .

5+ wp

Clear that A7 and A3 are negative, \; < 0 ifRo < 1, and A4 < 0 ifrg < 1. Hence, (1) Po is locally

asymptotically stable ifR0 < 1 andrg < 1 and (2) Po is unstable ifRo > 1.
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This analysis was only done at Ro > 1. The characteristics polynomial of]b(P1) is

For P1 = (s, L, sp, Ib) = (

L+y+0)6 +mp) {A+6 + w)[(8 + w)A + ub(d + pb - Bo)][(1L +y +9)}\2
+ B+ +OA+ M +0)(u+y-0)B-u-Y]}=0

From the characteristics polynomial of]b(P1), we got two first eigenvalues i.e

Ay = -(8 + pub) and A, :%j}-%)_ Clear that A; < 0 and A, < 0 ifry, < 1.

From (W+y +0)A2+ B+0)(L+0)A+ (u+0)(u+y-0)B-u-y) =0, we got the
simpler equation A% + B9, ++0)(B-pn-y) =0.

(u+y+6)
(B+6)(u+6)
DefineA = 1,B = S and c = (OB -w-y),
(k+y+6) - _
Clearthat B > 0 and C > 0ifRo > 1.Hence, A3 = ~B=VD - hd A = —B+/D

2

where D = B2 - 4C. Because C > 0 then D < B2. Hence, Re(A;) < 0 and Re(A;) < 0ifRo > 1.
Hence, (1) P1 is locally asymptotically stable ifry < 1 and Ro > 1; (2) P1 is unstable ifrg > 1.

Ku+yIm . up
By +17) " = By

We have I}, = L[ﬁb_g:b”)], I = _waj_mc, where A =B(0 +u+y),B =B(0 +u+yl; -

(1 + O)K[B - ( +y)], and C = -B(p + B)KI;.
This analysis was only done atry > 1 and Ro > 1. The characteristics polynomial of]b(P2) is

L
L Ip):

For P2 = (5,1, sp, Ib) = (

KT T I0L {[LA% + (L(8 + ub) + Bolp)A + pbPuly][A1A% + BiA + C1]} = 0
b h

where A1 = K(Iy, +I1), B1 = BI;? + (2Bl + K(u + 01}, + I;[BI; + K2p + 6 +y)],

Ci =B +y+OL% + 2B +y + Oy + LB +y +0) + K + 0) (1 + ).
From LA? + [L(8 + ub) + Bblp]A + pubPblb = 0 we got

-(L(S + ub) + Bbly) - V[L(S + ub) + Bulp]? - 4L. yupBly .

A o= oL nd
a, o Lt up) + Bblp) + V[L(8 + pb) + Bolp]? - 4L. ubPoly
27 2L '

Clear that [L(8 + pb) + Bbly]? - 4L. pbPuly, = [(Bbly, - Lub)? + 2LSPbI, | > 0 and [L(S +
ub) + Bbly]? > [L(8 + ub) + Bbvly]? - 4L. pbBoly > 0.

Hence, A; and A, are negative. From A1A? + B1A + C1 = 0 where A1 = K(I;, +11),
B1 = BIy” + (28I + K(u + O)I} + ;[BI; + K21 + 6 +y)],

Ct =B +y + O + 2Bk +y + O)I; + LBk +y +6) + K + 0) (1 +y)]
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we got A3 = and A3 = . Clear that A, B, and C are all positive if ry >

1and Ro > 1. Hence, Bf — 4A1C1 < B{. It caused A3 and A4 have real part.
Hence, P2 is locally asymptotically stable ifr; > 1and Ro > 1.

4. Simulation

Simulation was done for three cases like three conditions in Theorem 2. Value of some parameter
followed from Kharis & Arifudin [12]. Value of parameter were given in Table 2.

Table 2. Value of parameters

Parameter Value Parameter Value
u 0,00004 Bb Oto 1
B 0to 1 mb 0,00137
m 0,00004 6 0,7
y 0,098 K 6000
0 0,037 L 20000
b 0,00137

4.1. Simulationforr, < 1andRo < 1

In this case, we used the value B = 0,08 and fb = 0,5. From the formula ry and Ro in Theorem 1, we
got rp = 0,713 < 1 and Ro = 0,816 < 1. From Theorem 1, There is only one equilibrium point i.e.
Po= s, I, sb, IbA = 1,6000,0,39.06,0A. The graphs for this simulation were given on Figure 2.
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Figure 2. Vector Field in neighborhood of point Po at rp < 1 andRo < 1
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From Figure 2, it can be seen that the solutions that is near from Po converge to Po. These simulations
were similar with Theorem 2.

4.2. Simulationforr, < 1 and Ro > 1.

In this case, we used the value B = 0,4 and b = 0,5. From the formula ry and Ro in Theorem 1, we
got rg = 0.71 < 1 and Ro = 4,08 > 1. From Theorem 1, There are two equilibrium points i.e. Po =
s, I sb, IbA = 1.6000,0,39.06,04 and P1 = fis, I, sp, bA = 1470.6,1242.36,39.06,0A. The graphs for

this simulation were given on Figure 3. From Figure 3, it can be seen that the solutions that is near
from P1 converge to P1. These simulations were similar with Theorem 2.



Figure 4. Phase portrait projection of solution at ryp > 1 and Ro > 1
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4.3. Simulationforry, > 1and Ro > 1

In this case, we used the value B = 0,4 and Bb = 0,8. From the formula ry and Ro in Theorem 1, we
got rp = 1,14 > 1, Ro = 4,08 > 1. From Theorem 1, There are three equilibrium points i.e. Po =
s, I sb, IbA = 1,6000,0,39.06,0A, P1 = s, I sb, IoA = M,1470.6,1242.36,39.06,0A, and P2 =
s, I, sb, IbA = A.554.75, 1493.57, 34.25,2465.75 A. The graphs for this simulation were given on

Figure 4. From Figure 4, it can be seen that the solutions that is near from P2 converge to P2. These
simulations were similar with Theorem 2.

5. Conclusion

From analysis above, we get the dynamic of mathematics model of Al-epidemic with vaccination on
bird population especially for constant population. We also got the formula of reproduction number
fLro and RoA which can be used to determine whether the epidemic spread widely or vanish. For the

formula of ry, we got that the proportion of vaccinated susceptible bird can change the value of rg. If

this proportion increase then ry decrease. It means we can prevent the spreading of this epidemic in

bird population by increasing the proportion of vaccinated susceptible bird. For human population, we
can prevent the spreading of this epidemic by reducing the probability of infectious contact between
infected people and susceptible people. It can be done by quarantine infected people. For the next
research, we propose to make the mathematics model for non-constant population.
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